

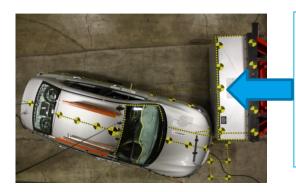
GOVERNMENT INDUSTRY MEETING April 3-5, 2019 | Washington, DC

Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Rudolf Reichert George Mason University

*This meeting is co-located with

Background – Oblique Impacts

- Oblique impacts account for a significant amount of accidents
- Vehicle crash mechanisms and occupant kinematics differ from co-linear impacts


Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE

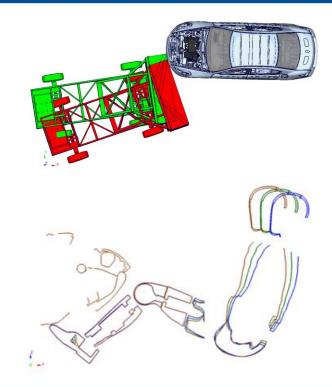
2

Background – Test Procedure

- NHTSA has developed an oblique test procedure
- Test setup and seating position tolerances are immanent to full-scale testing

OMDB 90 km/h 2500 kg 35% overlap 15° oblique

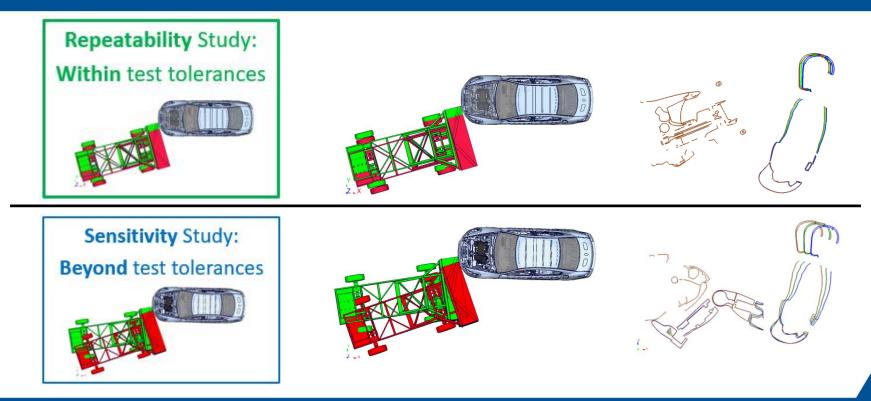
+/- 5mm +/- 20mm



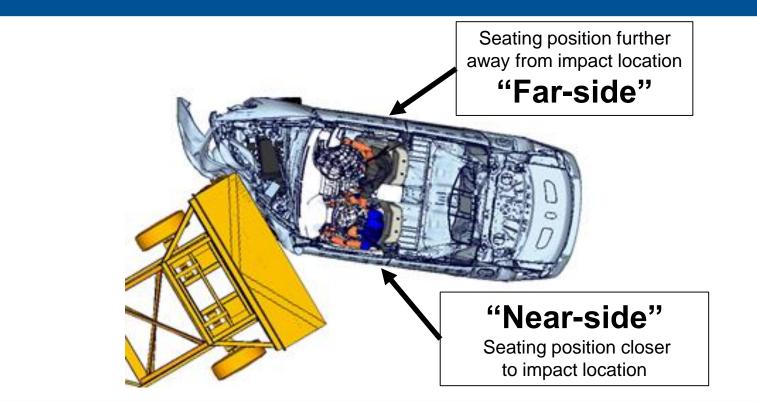
Objective

Evaluate effect of:

• OMDB test setup parameters (Test setup study)


 Seating position parameters (THOR position study)

Definitions I



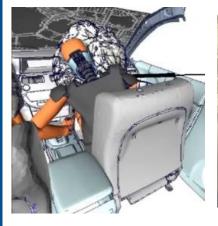
Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE

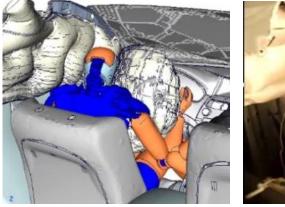
5

Definitions II

Methods – FE Simulation

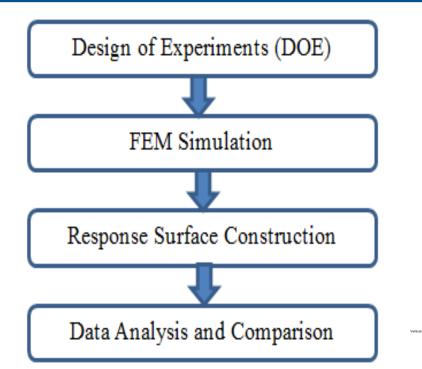
- A validated baseline model of a 2014 mid-size sedan was used
- The model with ~ 5.000.000 elements included the vehicle with interior and restraints, the OMDB, and two 50% THOR occupants
- Approximately 200 simulations were conducted

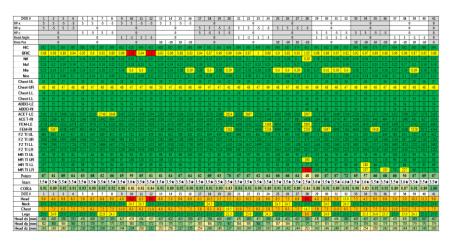


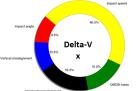


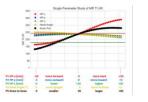
Methods – Baseline Model Correlation

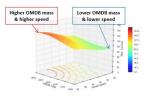
 Baseline model correlated reasonably well with full-scale test results (Test #8789 2014 Honda Accord 4 door sedan)

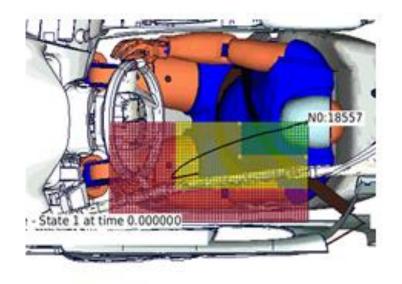







Methods – DOE





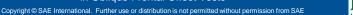
Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE MASON UNIVERSITY CHIMIN SHIP

Methods – Data Analysis

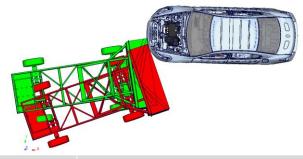
Evaluation Criteria

- Vehicle kinematics and intrusions
- Occupant kinematics and injury criteria
- Comparison of time history data using CORA/ISO 18571, e.g. GOOD > 0.8

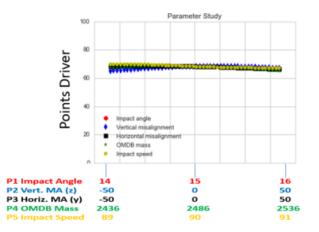
Test Setup Study Parameters

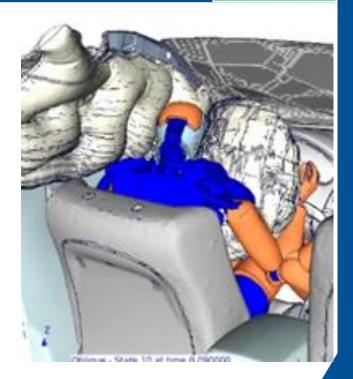

Effect and importance of OMDB test setup parameters within and beyond defined tolerances were evaluated.

Parameter	Range			
Impact angle [degree]	14	15	16	
Vertical Misalignment (MA) [mm]	-50	0	50	
Horizontal MA [mm] / Overlap	-50 (33%)	0 (35%)	50 (38%)	
OMDB Mass [kg]	-50	2486	+50	
Impact speed [km/h]	89	90	91	


Repeatability Study

Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests


Parameter	Range			
Impact angle [degree]		10	15	20
Overlap [%]		30	35	40
OMDB Mass [kg]	2000	2250	2500	
Impact speed [km/h]	80	85	90	

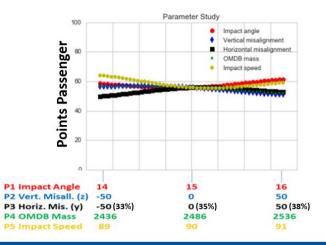

Sensitivity Study

Results – Test Setup Repeatability Study Driver

Near-side occupant kinematics well controlled

Similar overall injury risk and CORA ratings greater than 0.86 indicate good test repeatability

Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE



Repeatability Study: Within test tolerances

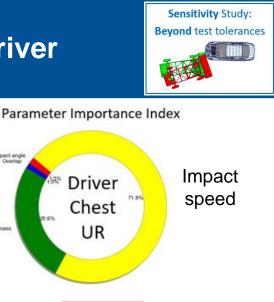
Results – Test Setup Repeatability Passenger

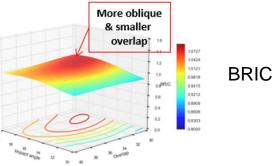
Far-side occupant kinematics less controlled

CORA ratings between 0.81 and 0.94 indicate good test repeatability

Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE

Repeatability Study: Within test tolerances


Results – Test Setup Sensitivity Study Driver


Impact speed most important for chest (72%) and overall risk (49%)

Higher impact speed correlated with higher chest deflection and overall injury risk

More oblique angle and smaller overlap correlated with higher BRIC and lower HIC

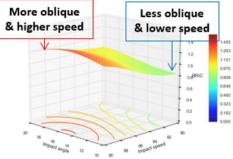
CORA scores between 0.71 and 0.87

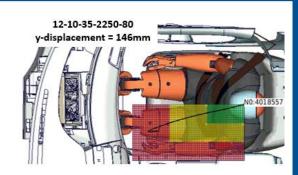
spact and

IDB mass

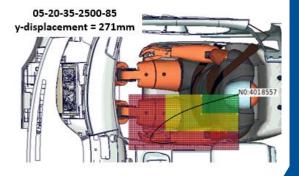
Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE

14

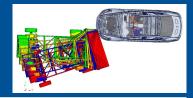

Results – Test Setup Sensitivity Passenger

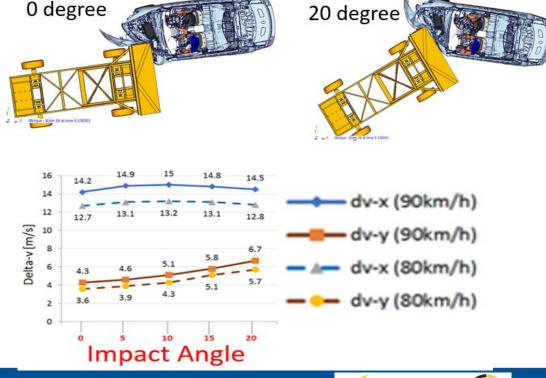

Significant differences in occupant kinematics

Impact speed most important parameter for overall injury risk (49%) and BRIC (69%)

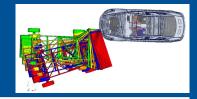

More oblique angle and higher speed corelated with higher BRIC

Cora scores between 0.73 and 0.9

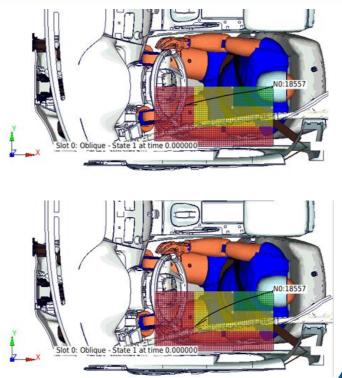

Sensitivity Study: Beyond test tolerances


Results – Impact Angle Study Vehicle

Varying impact angle from co-linear to +20° showed significant differences:

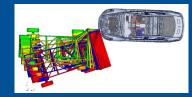

Vehicle y-pulse

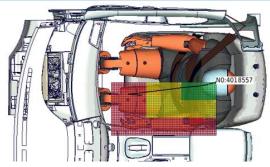
Vehicle yaw

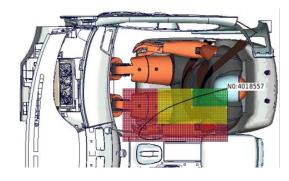


Results – Impact Angle Study Driver

Similar overall injury risk for different impact angles were observed because:

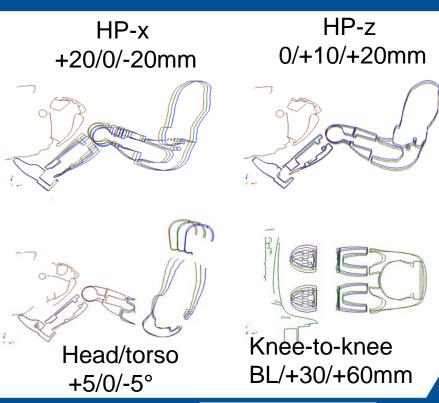

- More oblique conditions correlated with higher BRIC values
- More oblique conditions correlated with lower chest deflection




Results – Impact Angle Study Passenger

For the passenger, more oblique conditions correlated with:

- Larger lateral head trajectories
- Higher BRIC and tibia values
- Higher overall injury risk



Seating Position Parameters

Effect and importance of THOR positioning parameters were determined

Repeatability Study	Range (Driver)			
H-Point (x)	-5	BL	+5	
H-Point (Y)	-5	BL	+5	
H-Point (Z)	-5	BL	+5	
Head Angle	-1	BL	+1	
Knee/Heel Position	-10	BL	+10	

Sensitivity Study	Range (Passenger)			
H-Point (x)	-20	BL	+20	
H-Point (y)	-5	BL	+5	
H-Point (Z)		BL	+10	+20
Head Angle	-5	BL	+5	
Knee/Heel Position		BL	+30	+60

showed good repeatability:

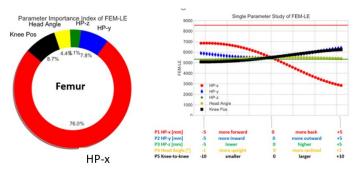
Small variance in occupant kinematics

Changing seating position of near-side

occupant within defined test tolerances

- "GOOD" correlation of time history data (CORA ratings between 0.81 and 0.94)
- Tibia loads most sensitive due to interaction with gas pedal

Results – THOR Position Repeatability Study Driver



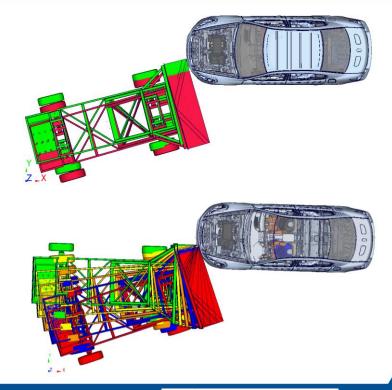
Results – THOR Position Sensitivity Passenger

Changing seating position of the far-side occupant beyond defined test tolerances resulted in more significant differences:

- Differences in occupant kinematics
- HP-x most important (76%) for Femur
- Time history data with larger variance (CORA ratings between 0.7 and 0.9)

Effect of Test Setup and Seating Position Variance in Oblique Frontal Offset Tests Copyright © SAE International. Further use or distribution is not permitted without permission from SAE

Sensitivity Study: Beyond


test tolerances

Conclusion

NHTSA's oblique test showed good overall repeatability when relevant parameters were changed within defined tolerances

Far-side occupant results were more sensitive to parameter variations than the near-side occupant

More oblique impact scenarios tended to produce higher overall injury risk for the far-side occupant

Limitations

- Study has been conducted using a specific mid-size sedan vehicle model which was validated using NHTSA test #8789 (2014 Honda Accord 4-door sedan)
- Effect of individual and combination of parameters was determined using DOE surrogate models

Acknowledgment

- Baseline FE vehicle model with restraints developed by EDAG and Key Safety Systems
- THOR occupant FE model developed by UVA

 Project has been sponsored and directed by NHTSA

Thank You

reichert@gmu.edu

