NHTSA Evaluation of the Flex-GTR Legform on US Vehicles

Brian Suntay & Ann Mallory Transportation Research Center Inc.

Jason Stammen NHTSA Vehicle Research and Test Center

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.

Pedestrian Leg Testing

The Pedestrian Global Technical Regulation (GTR No. 9) includes a projectile leg simulating a moving vehicle hitting a stationary pedestrian at 40 km/h

SAE International

Goals of the Testing

- Comparison of vehicle performance with TRL versus Flex-GTR legforms
- Confirm whether the Flex-GTR legform is sensitive enough to distinguish marginally performing vehicles from poor performing vehicles
- Test the Flex-GTR's durability against aggressive locations on US vehicle bumpers

Pedestrian Legforms

Flex-GTR

TRL

- Rigid Legform Impactor
- Steel femur and tibia segments
 - Frangible steel ligaments
- Instrumentation:
 - Tibia accelerometer
 - Rotary pot with rigid arm

Flex-GTR

- Flexible Legform Impactor
 - Increased biofidelity
- Flexible bone core, wire ligaments, knee tension cables
- Instrumentation:
 - Tibia and Femur strain gauges
 - Ligament string potentiometers (MCL, ACL, PCL, ACL)

Injury Assessment

Bending Injury Measures Knee Bending Angle MCL Elongation

Shear Injury Measures Knee Shear Displacement ACL/PCL Elongation

Tibia Fracture Measures

7

• Tibia Acceleration

TRL

Tibia Bending Moment

Volkswagen Passat

Mazda Miata

Honda Pilot

Chevrolet Silverado

Chevrolet Equinox

Test Results

10

TRL Test Results

Peak Shear Displacement (mm)

Peak Tibia Acceleration (g)

Peak Bending Angle (deg)

Flex-GTR Test Results

Passat 428 Miata 460 Civic 475 Pilot 402 Silverado 333 378 Equinox 100 200 300 400 500 0

Peak Tibia 1 Moment (Nm)

Peak MCL Elongation (mm)

Peak PCL Elongation (mm)

Peak ACL Elongation (mm)

Comparison of Results TRL vs Flex-GTR

Comparison of Results – TRL vs Flex-GTR

Fracture Measures

■ Flex-GTR - MCL Elongation

Shear Injury Measures

TRL - Knee Shear Displacement

Flex-GTR - Max ACL/PCL Elongation

Comparison of Results – TRL vs Flex-GTR

Summary of Findings

- The Flex-GTR measures lower values than the TRL legform with respect to their current injury limits
 - Matsui et al., Characteristics of the TRL Pedestrian Legform and the Flexible Pedestrian Legform Impactors in Car-front Impact Tests, Paper Number 09-0206, 21st International Technical Conference on the Enhanced Safety of Vehicles, 2009.
 - Yoon et al., Evaluation of Usefulness and Repeatability for Pedestrian Protection Flex-PLI, Paper Number 11-0425, 22nd International Technical Conference on the Enhanced Safety of Vehicles, 2011.

 Aggressive vehicle bumper impact locations chosen

Flex-GTR Vehicle Sensitivity

Sensitivity

 Testing with a previous version of the Flex-GTR legform suggested an inability of the legform to distinguish among vehicles that performed poorly (Mallory, 2010)

Results from current series of tests

> Three additional tests performed on the center of the three passenger cars

Volkswagen Passat

Mazda Miata

Honda Civic

Comparison of Old and New Flex-GTR Data – Center Impacts

Fracture Measures

Bending Injury Measures

Flex-GTR (New) - MCL ElongationFlex-GTR (Old) - MCL Elongation

Shear Injury Measures

Flex-GTR (New) - Max ACL/PCL Elongation
Flex-GTR (Old) - Max ACL/PCL Elongation

Flex-GTR (New) - Max Tibia Bend Moment
Flex-GTR (Old) - Max Tibia Bend Moment

Summary of Findings

- The Flex-GTR measures lower values than the TRL legform with respect to their current injury limits
- The Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs

Flex-GTR Durability

Observations and Durability Assessment (Flex-GTR)

Misalignment of the knee after impacts

- Femur strain gauge #2 (middle gauge)
 - Broken gauge/wire
 - Still being investigated

Tear in the neoprene skin and scratches on the femur knee block

Summary of Findings

- The Flex-GTR measures lower values than the TRL legform with respect to their current injury limits
- The Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs
- The Flex-GTR was observed to be durable
 - Survived US vehicle bumper impacts that exceeded injury limits
 - A majority of the issues that were observed were minor and repairable

Flex-GTR Repeatability (Additional Observation)

Flex-GTR Repeatability

Injury Measurement		Injury Reference Value (FlexTEG)	Chevrolet Silverado		
Impact Location			Center		
			GTR (1001)	GTR (1002)	%Difference
Femur Moment (Nm)	Femur 3 (Upper)	*	73.7	77.3	5%
	Femur 2 (Middle)		139.5	138.5	1%
	Femur 1 (Lower)		252.1	245.6	3%
Tibia Moment (Nm)	Tibia 1 (Upper)	340 Nm (380 Nm)	332.7	332.6	0%
	Tibia 2 (Mid Upper)		311.1	319.5	3%
	Tibia 3 (Mid Lower)		233.5	237.4	2%
	Tibia 4 (Lower)		110.5	107.9	2%
MCL Elongation (mm)		22 mm		22.3	NA
ACL Elongation (mm)		13 mm	8	7.9	1%
PCL Elongation (mm)		13 mm	5.4	5.6	4%
LCL Elongation (mm)		*	-4.2	-3.8	10%
Tibia Acceleration (g)		*	-59.2	-59.5	1%
Velocity (m/s)		*	11.1	11.1	0%
				Average:	3%

SAE International[®]

Summary of Findings

- The Flex-GTR measures lower values than the TRL legform with respect to their current injury limits
- The Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs
- The Flex-GTR was observed to be durable
 - Survived US vehicle bumper impacts that exceeded injury limits
 - A majority of the issues that were observed were minor and repairable
- Flex-GTR repeatability was not directly evaluated, but
 - Silverado Flex-GTR tests 1001 and 1002 showed similar values at the same impact location, which is promising

NHTSA Evaluation of the Flex-GTR Legform on US Vehicles

Brian Suntay & Ann Mallory Transportation Research Center Inc.

Jason Stammen NHTSA Vehicle Research and Test Center

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.